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interactions 
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Received 1 March 1990 

Abstract. The purpose of this paper is to attempt to determine how much of the Ising ground 
state there is in the ground state of an Heisenberg antiferromagnetic. Square planar clusters 
of 5 ,  13 and 25 spins of 4 are considered. using approximate ground states chosen as a result 
of symmetry arguments. Various physical quantities, including bond energies which are 
more negative than those found with the corresponding Ising states, then become relatively 
easy to evaluate. We conclude that the chosen states are better approximations than the 
Ising states. It seems that as the number of spins increases the probability of finding the Ising 
state tends to zero. while remaining the most probable state, in asite representation. 

1. Introduction 

The discovery of high temperature super-conductivity in a range of copper oxides has 
created interest in all copper compounds which contain planar arrangements of copper 
and oxygen ions, whether or  not they are super-conducting. Among these are compounds 
which are insulating and  regarded as containing square planar arrangements of Cu2+ 
ions, each with spin i, with 0'- ions between the nearest neighbour Cu2+ ions. I t  is 
generally assumed that nearest neighbour Cu2+ ions are coupled by antiferromagnetic 
exchange interactions of the Heisenberg type. The  understanding of the nature of the  
ground and excited states of such a system is then a special class of a widely studied 
problem: that of the nature of the states of a general antiferromagnetic. This problem is 
an extremely challenging one ,  and there is extensive literature on it. (For recent ref- 
erences see [ 11 .) 

The  purpose of this paper is to describe a conceptually simple idea which may be  of 
interest because it seems to throw light on  the nature of the ground states of some finite 
clustersof spins, without the considerable effort that is required to obtain exact solutions. 
The  investigation began in an attempt to answer a question which arises from the usual 
model of an  antiferromagnet: that in which there are two interpenetrating ferromagnetic 
sub-lattices. With an  Ising type of interaction the ground state has one  sub-lattice with 
all spins having m, = B and another having m, = -4, and the interest is in the amplitude 
of this state in the ground state of the Heisenberg system. To obtain a feeling for the 
answer it seemed to  be of interest to study a small system using the  algebraic form of the 
Lanczos method [2]. The  first choice is shown in figure 1-a structure consisting of five 
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Figure 1. 5 sites, with X denoting up and 0 
denoting down spins. 

Figure 2. 13 spins, with X denoting up and 0 
denoting down spins. 

spins-the problem being to find the ground state and determine the amplitude of the 
state: 

I - )  1 + + + +). (1) 
The first ket represents the m, of the site at the centre of the cluster (site 0, which will 
also be labelled as shell A)  and the second ket gives the m, values of the outer four sites 
(labelled sequentially from 1 to 4 and described as being in shell B). By the method one 
begins with the above state and applies the Hamiltonian to it. This generates a state that 
contains the initial state and a remainder, which is used to define a normalized state 
orthogonal to the initial one. The Hamiltonian is then applied to this new state and 
the remainder, which is orthogonal to both previous states, is used to define a third 
orthonormal state, and so on. When the matrix of the Hamiltonian is set up in the basis 
of the orthonormal states so generated it is tri-diagonal. In the present application it is 
not necessary to go beyond the first step, for only two orthonormal states are generated. 
The matrix of the Hamiltonian is 2 x 2 and is easily diagonalized, giving, as an eigenstate, 
the low-lying state 

( 2 ) 1 / 2 [ / - ) / + + + + )  - $ ( 1 + ) 1 - + + + ) +  \ + ) I + - + + )  
+ l + ) l + + - + ) +  l + ) l + + + - ) ) ] .  

By Kramers’ theorem this is degenerate with the state in which all spins are reversed. 
Also, the mean energy of the interaction of the single spin in the A shell with any spin 
in the B shell is - #  in units of J, the exchange interaction which is taken to be positive. 

At this point it is of interest to pause and ask what the analysis has achieved, for it 
is obvious that, since the Hamiltonian commutes with the total spin, the Hamiltonian 
eigenstates are eigenstates of total spin. Thus, beginning with a state which has M ,  = $, 
the method has generated an eigenstate of total spin. But this could have been done in 
quite a different way, for the state of the central site (0) is a state belonging to a total 
spin of 4, while the state I + + + +) of the B shell is an eigenstate with S = 2. But since 
Dli2@D2 = D3/* + it is clear that the ground state either belongs to total spin 4 or f, 
and with an antiferromagnetic interaction it is not surprising that the ground level has 
the lower of the two values, which is what is found. This state could have been written 
down directly by using the appropriate coupling coefficients for angular momentum 
operators (which are known variously as Clebsch-Gordan, or Wigner coefficients or as 
3-j symbols, see [3]). In fact the state given above is equivalent to 

( + ) 1 / 2 ( 1  - t ,  2)  - 111, 2 2  1)) (1,2). (3) 
The first number in each ket gives the M,  value for spin 1 (the A shell) and the second 
the M ,  for the spin 2 of the B shell. The (i, 2) which follows the ket gives the total spin 
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values of the two shells in sequence. Two comments can now be made. The first is that 
the new form is rather simpler to write down than the first, for the string of m, kets (a 
'site representation') is not required. Secondly, the evaluation of expectation values 
of the whole or parts of the Hamiltonian can be obtained using angular momentum 
properties, because any site operator can be replaced by an equivalent angular momen- 
tum operator acting in a suitable spin space. It is not necessary to give a demonstration 
at this point, as the technique will be used frequently for the larger clusters to be 
considered in the following. 

2. A cluster of 13 spins 

The next cluster of interest is one in which spins in the B shell are coupled to those 
nearest neighbours which have not been included previously. Such a cluster is shown in 
figure 2. It contains 13 spins: one in the A shell; 4 in the B shell and 8 in the C shell, with 
those in the C shell being numbered consecutively from 6 to 13. It is convenient to 
suppose that the exchange interactions between the B and C shells can be gradually 
turned on by varying a parameter from zero to unity. When it is zero a ground state of 
the Hamiltonian is given by an extension of (3) 

(4) (4)1/2(1-1 2 ,  2 )  - 111 2 2 ,  I ) ) /  - - - - - - - - )  

where the ket 1 - - - - - - - -) is the state in which all the spins in the C shell have m, = 
-1. The state (4) contains the Ising ground state with quite a large amplitude because 
the part 

(i)1/2(1-4,2) - 111 2 2 ,  1)) ( 5 )  

has been constructed from an initial state which has the A site with m, = -i and all B 
sites with m, = 4. The application of successive powers of the Hamiltonian when the 
parameter is non-zero (the Lanczos technique) is quite tedious, and it may be thought 
to be unnecessarily so, because one knows, apriori, that the eigenstate is a state of total 
spin. It would seem sensible, therefore, to avoid beginning with the above state and 
instead use one which is already an eigenstate of total spin. Since the first part of the 
state is already an eigenstate of total spin, with S = $, and the part I - - - - - - - -) is 
an eigenstate of S = 4,  with M, = -4, there is the question of which total spin to choose. 
Now D3/2C3D4 = D512 + D,j2 + D912 + D11/2, so it seemslikely, for an antiferromagnetic, 
that the manifold with the smallest total spin will lie lowest. It therefore seems reasonable 
to choose, as initial state for the Lanczos method, a state constructed from the S = Q of 
the first two shells and an S = 4 for the C shell which belongs to an S = 4 and has M = 
-3. This is readily done using Clebsch-Gordan coefficients or by using the relation 

2S1 * S2 = (SI + S , )  . (S, + S2) - SI 'SI - S2 - S2 

= 2s;s; - s;s: - s:s; 
and setting 

I f ,  - 9 )  = ai$,  -4) + 614, -3) + C I  -1, - 2 )  + d /  -Q, -1) (k 4) (7) 

where on the right side the numbers in the kets denote M values and the ($, 4) denote 
the associated total spin values in the same order. When (6) is applied to the left side of 
(7) it produces a multiple of the right side, which can be equated, by the direct application 
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of (6), t o  the right side. This produces simple relations between the coefficients a, b etc. 
It is found that 
15 2 ,  - 5 ) - ( -  2 - i) ''* ( 1  4, -4) - (3/V!Z) I i, -3) + (3/V%) I -2 ,  -2) 

- (l/V%)I -4, -1)) (i, 4). (8) 

If (8) has been expressed in a site representation it would have contained many kets and 
the application of powers of the Hamiltonian, as is required in the Lanczos method, 
would have produced even more complicated expressions. Rather than embark on this, 
it is of interest to ask how good an  approximation this state alone is to the ground state? 
A n  indication can be obtained by comparing the expectation value of the Hamiltonian 
in this state with that for the corresponding Ising state. 

To demonstrate how this is done it is convenient to begin with s$ and evaluate its 
expectation value for the state (8), using the right hand side of the equation. The  second 
M value in each ket refers to a manifold of states constructed solely from the C shell, 
and within this manifold sk is equivalent to 4Sk .  It follows that 

(9) (5 2 ,  - 2 1  2 sc  z l Z  2 ,  - L ) - ? , L ( - 4 +  2 - 3  H " ( - 3 ) +  2 4  "(-2)+ H4 &(-1))=-25/56 

The  mean value of the z-component of a spin in the C shell is thus of smaller magnitude 
than would be found for the Ising state. (All other components have zero expectation 
values.) The  evaluation of the expectation value for si is slightly more complicated. 
Within the S = 4 part of (8) it is equivalent to unity. Within the S = 4 part it can be 
written as AS,. To determine A ,  use is made of (2). Then 

= b(& + &.) = 

Thus 
( l s B  1 )  = -1 10 , 2[1 :j i + & ( - 3 )  + &(-2) + &(-1)] 

(Is& 1 )  = 4. A( ls is ;  1 )  
- a  

2 8  - 

where SI acts in the S = $ manifold of (8) and S 2  in the S = 4 manifold. Thus 

( l s $ s t : l )  = 4 &[3(-4) + & ( & ) ( - 3 )  + &(-i)(-2) + &(-4)(-1)] 

(13) - -2 5 6 - 

The Ising value would be -$, so there is a substantial difference. However, in the 
Heisenberg case $(sB+sc + sis:) must also be included. The same equivalence factors 
can be used, so: 

(Ii(s;sc + sBs:)/) = AA(/s:s; 1 )  

( / s 6 s B  1 )  = #&-3m/vZ - 9 m / m  - 3 m / m )  

( ~ s c * s , ~ ) =  3 2 (15) 

(14) 
with 1 ) written as the righthand side of (8) and with S, = 4 and S = 4. It follows that 

or  

which has larger magnitude than that for the Ising case. Using similar reasoning the 
mean values of s i ,  SAS$ and sA sB are  respectively -- & , & and -$. Every bond gives 
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a lower energy than would be found for the Ising state and so suggests that (8) is a better 
choice for either the Lanczos o r  a variational method. 

The  expectation value of sA 6 sB was found to be identical in the 13 site and in the 5 
models. This could have been expected, for sA * sB is an invariant, and so could have 
been replaced by an  equivalent constant within a manifold of total spin. In using (8) 
sA sB is equivalent to unity in any S = 4 parts, and so it is as if it acts solely in the S = 4 
manifold, which is just the case considered in the 5 site model. 

3. 25 sites 

The method is only slightly more complicated when extended to the 25 sites shown in 
figure 3, a problem which is outside the range of the present finite cluster calculations. 
In this case the state with S = 3 for the A.  B and C shells is coupled to the S = 6 of a D 
shell, yielding an overall S = 3. The state with M = 4 is 

6 )  - (5/V/60)1 - 4 , 5 }  + (5/VTTE)l-f, 4) - l/VZli, 3)  

+ (4/32/22.) 14,2) - (1/6fi)  1 3, I)]  (,i, 6) (16) 
and with the states already given in (3) and (8) and a knowledge of the matrix elements 
of S within a variety of spin manifolds [4] it is straightforward to calculate any required 
expectation values. Thus ( l s A l ) =  -$, ( l s Z g ! ) = i ,  ( l s k i ) =  - %  and ( i s b i ) =  &. A 
check is provided because 

(17) 

The  mean values of sA * sB and sB * sc are exactly the same as the values for the 13 site 
model, and sc - sD is - B. 

4. Discussion and conclusion 

The original purpose of this work was to try to discover how much of the k ing  state there 
is in the ground state of a Heisenberg system by studying a finite cluster. Whether or  not 
this goal has been achieved is not entirely clear, for the determinations of actual ground 
states present formidable problems. What has been done is that we have obtained states 
which a re  probably better approximations to the actual ground states than the Ising 
states, for they certainly produce lower expectation values for the Hamiltonians. If one  
is prepared to ask the same questions of these states as one would like to ask about the 
true ground states, a number of interesting conclusions can be reached. For the 5 site 
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problem and the approximate ground state the probability that the system will be in the 
Ising state is 6, which is the square of the coefficient of 1 -) 1 + + + +) in (2), or of 1 -1,2) 
in (3); for the 13 site problem it is (obtained from the square of the product of the 
normalizing factors in (4) and (8)); and for the 25 site problem it is a. It is therefore 
quite clear that as the clusters become larger the probability of finding the Ising state 
decreases, tending to zero as the number of spins increases. Apart from equations (1) 
and (2) none of the states which have been used have been written in a site representation. 
In principle this would be possible, but in practice they would be very lengthy, for with 
25 sites, for instance, there are a vast number of such states which could be expected to 
be present. Since the bulk of the probability has already been absorbed in the Ising state 
it is to be expected that each such site state will appear with an extremely small amplitude. 
So it can be expected that although the Ising amplitude tends to zero as the number of 
spins increases, it is always going to be more probable than any other site state. But this 
is not to say that the other site states can be ignored because even in the 13 site problem 
the major contributions to the mean values of sA - sB and sB * sc come from the spin-flip 
terms in the Hamiltonian. The inference is that the multitude of states with very small 
amplitudes have correlated phases and amplitudes, such that their neglect would be 
disastrous to the determination of the bond energies. Indeed it seems likely that if 
anything is to be neglected it should be the Ising-like part of the Hamiltonian. It seems, 
also, that another requirement is met by these relatively small terms. Throughout the 
analysis it has not been necessary to specify the axis of quantization, and indeed it is 
arbitrary. But how can it be arbitrary if only the Ising parts of the states are retained? 
The rotational symmetry associated with the total spin would be lost, and one can only 
assume that the states with the relatively small amplitudes are necessary to ensure the 
rotational symmetry. 

Finally there is the question of a cooperative transition into the antiferromagnetic 
phase. It is often assumed that below the transition temperature the system is not in an 
eigenstate of the Hamiltonian being used because in practice there are other pertur- 
bations, of lower symmetry, present which have been omitted and which determine 
alignments. Indeed in some studies such perturbations are deliberately added and then 
allowed to tend to zero towards the end of the theory. In the present case it would seem 
that such a procedure might leave the system in an aligned state, but one which is still 
an eigenstate of the Heisenberg Hamiltonian! 

References 

[ 11 Gross M,  Sanchez-Velasev E and Siggia E D 1989 Phys. Reu. B 40 11328 
Lui Z and Manousakis E 1989 Phys. Reu. B 40 11437 
Neuberger H and Ziman T 1989 Phys. Reu. B 39 2608 
Reger J D, Riera J A and Young A P 1989J. Phys.: Condens. Matter 1 1855 

Lanczos C 1950 J .  Res. N B S  45 255 
[2] Fletcher J R 1980J. Phys. A :  Math. Gen. 13 2029 

[3] Judd B R 1963 Operator Techniques in Atomic Spectroscopy (New York: McGraw-Hill) p 10 
[4] Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University 

Press) 


